Monday 6 November 2017

Moving average filter qutoff


Preciso projetar um filtro de média móvel que tenha uma freqüência de corte de 7.8 Hz. Eu usei filtros de média móvel antes, mas, na medida em que eu estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso se relaciona com uma freqüência de corte O inverso de 7,8 Hz é de 130 ms, e estou trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho médio da janela de filtro móvel de 130 amostras, ou há algo mais que eu estou faltando aqui? 18 de julho 13 às 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O som adicionado e também para fins de suavização, mas se você usar o mesmo filtro de média móvel no domínio de freqüência para a separação de freqüência, o desempenho será o pior. Então, nesse caso, use filtros de domínio de freqüência ndash user19373 3 de fevereiro 16 às 5:53 O filtro de média móvel (às vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, afirmado de forma diferente: lembrando que uma resposta de freqüência de sistemas de tempo discreto É igual à transformação de Fourier de tempo discreto de sua resposta de impulso, podemos calcular da seguinte maneira: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (omega). Usando algumas manipulações simples, podemos obter isso de forma mais fácil de entender: isso pode não parecer mais fácil de entender. No entanto, devido à identidade do Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse anteriormente, o que você realmente está preocupado é a magnitude da resposta de freqüência. Então, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Podemos soltar os termos exponenciais porque eles não afetam a magnitude do resultado e 1 para todos os valores de omega. Uma vez que xy xy para dois números complexos finitos x e y, podemos concluir que a presença dos termos exponenciais não afeta a resposta global de magnitude (em vez disso, eles afetam a resposta de fase de sistemas). A função resultante dentro dos suportes de magnitude é uma forma de um kernel Dirichlet. Às vezes, é chamado de função periódica sinc, porque se parece com a função sinc algo em aparência, mas é periodicamente. De qualquer forma, uma vez que a definição de frequência de corte é pouco especificada (ponto -3 dB -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Ajuste H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina omega igual à frequência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se de que omega 2pi frac, onde fs é a taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Esse deve ser o comprimento da sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Fffs é: O inverso disso é Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 erros Para N2, e menos de 0,5 para N4. P. S. Depois de dois anos, aqui, finalmente, qual era a abordagem seguida. O resultado baseou-se na aproximação do espectro de amplitude MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aprox. 1 (frac - frac) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac, multiplicando Omega por um coeficiente de obtenção de MA (Omega) aproximadamente 10.907523 (frac-frac) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Todo o acima se relaciona com a frequência de corte -3dB, o assunto desta publicação. Às vezes, é interessante obter um perfil de atenuação em stop-band que é comparável ao de um filtro de passagem baixa IIR de 1ª ordem (LPF de um único pólo) com uma freqüência de corte de -3dB dada (como um LPF também é chamado de integrador vazado, Tendo um pólo não exatamente na DC, mas perto disso). De fato, tanto o MA quanto o LPR de 1ª ordem IIR têm uma inclinação de -20dBdecade na banda de parada (um precisa de um N maior do que o usado na figura, N32, para ver isso), mas enquanto o MA tem nulos espectrales no FkN e um Por um lado, o filtro IIR possui apenas um perfil 1f. Se alguém quiser obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR e corresponda às freqüências de corte 3dB para serem iguais, ao comparar os dois espectros, ele perceberia que a ondulação da faixa de parada do filtro MA termina 3dB abaixo do do filtro IIR. Para obter a mesma ondulação de banda de parada (ou seja, a mesma atenuação de potência de ruído) como o filtro IIR, as fórmulas podem ser modificadas da seguinte forma: encontrei o script Mathematica onde eu calculava o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com o MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) aproximadamente N16F2 (N-N3) pi2. E derivando o cruzamento com 1 quadrado a partir daí. Ndash Massimo 17 de janeiro 16 às 2: 08 Resposta de freqüência do filtro médio de corrida A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel em L é Como o filtro médio móvel é FIR, o Resposta de freqüência reduz à soma finita Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função, a fim de determinar quais frequências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro desatualizado. Certas frequências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Nós podemos fazer muito melhor do que isso. O argumento acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright cópia 2000- - Universidade da Califórnia, Berkeley Atualizado 12 de março de 2017 O que são RC Filtragem e média exponencial e como eles diferem A resposta para a segunda parte da questão é que eles São o mesmo processo Se um vem de um fundo eletrônico, o RC Filtering (ou RC Smoothing) é a expressão usual. Por outro lado, uma abordagem baseada em estatísticas de séries temporais tem o nome de Exponential Averaging, ou para usar o nome completo, Promessa ponderada exponencial média. Isso também é conhecido como EWMA ou EMA. Uma vantagem chave do método é a simplicidade da fórmula para calcular a próxima saída. Demora uma fração da saída anterior e uma menos esta fração vezes a entrada atual. Algebraicamente no momento k, a saída suavizada y k é dada por Como mostrado mais adiante, esta fórmula simples enfatiza eventos recentes, suaviza as variações de alta freqüência e revela tendências de longo prazo. Observe que existem duas formas da equação de média exponencial, a acima e uma variante. Ambos estão corretos. Veja as notas no final do artigo para obter mais detalhes. Nesta discussão, usaremos apenas a equação (1). A fórmula acima é às vezes escrita de forma mais limitada. Como esta fórmula é derivada e qual é a sua interpretação Um ponto-chave é como selecionamos. Examinar essa maneira simples é considerar um filtro passa-baixo RC. Agora, um filtro passa-baixo RC é simplesmente uma resistência série R e um capacitor paralelo C conforme ilustrado abaixo. A equação da série de tempo para este circuito é O produto RC tem unidades de tempo e é conhecido como constante de tempo, T. Para o circuito. Suponhamos que representamos a equação acima em sua forma digital para uma série de tempo que tenha dados dados cada h segundos. Nós temos exatamente a mesma forma que a equação anterior. Comparando os dois relacionamentos por um que temos, o que reduz ao relacionamento muito simples. Daí a escolha de N é guiada pela constante de tempo que escolhemos. Agora, a equação (1) pode ser reconhecida como um filtro passa-baixa e a constante de tempo tipifica o comportamento do filtro. Para ver o significado da Constante de Tempo, precisamos olhar para a característica de freqüência desse filtro RC de passagem baixa. Em sua forma geral, esta é Expressar em módulo e forma de fase onde temos o ângulo de fase. A freqüência é chamada de freqüência de corte nominal. Fisicamente, pode-se mostrar que, a essa freqüência, a potência no sinal foi reduzida pela metade e a amplitude é reduzida pelo fator. Em termos de dB, esta frequência é onde a amplitude foi reduzida em 3dB. Claramente, à medida que a constante de tempo T aumenta, então a freqüência de corte reduz e aplicamos mais alisamento aos dados, ou seja, eliminamos as freqüências mais altas. É importante notar que a resposta de freqüência é expressa em radians por segundo. Isso é um fator envolvido. Por exemplo, escolher uma constante de tempo de 5 segundos dá uma freqüência de corte efetiva de. Um uso popular do alisamento de RC é simular a ação de um medidor, como é usado em um medidor de nível de som. Estes geralmente são tipificados por sua constante de tempo, como 1 segundo para tipos S e 0,125 segundos para tipos F. Para estes 2 casos, as freqüências de corte efetivas são 0,16 Hz e 1,27 Hz, respectivamente. Na verdade, não é a constante de tempo que geralmente desejamos selecionar, mas os períodos que desejamos incluir. Suponhamos que tenhamos um sinal onde desejamos incluir recursos com um segundo período de P. Agora, um período P é uma freqüência. Poderíamos então escolher uma constante de tempo T dada por. No entanto, sabemos que perdemos cerca de 30 da saída (-3dB) em. Assim, escolher uma constante de tempo que corresponde exatamente às periodicidades que desejamos manter não é o melhor esquema. Geralmente, é melhor escolher uma freqüência de corte ligeiramente maior, digamos. A constante de tempo é então que, em termos práticos, é semelhante. Isso reduz a perda para cerca de 15 nesta periodicidade. Portanto, em termos práticos, reter eventos com periodicidade ou maior, escolha uma constante de tempo de. Isso incluirá os efeitos das periodicidades de baixo para baixo. Por exemplo, se desejamos incluir os efeitos de eventos que aconteçam com digamos um período de 8 segundos (0.125Hz), então escolha uma constante de tempo de 0,8 segundos. Isso dá uma freqüência de corte de aproximadamente 0,2 Hz para que nosso período de 8 segundos esteja bem na faixa de passagem principal do filtro. Se estivéssemos amostragem dos dados em 20 timessecond (h 0.05), então o valor de N é (0.80.05) 16 e. Isso dá uma visão sobre como configurar. Basicamente, para uma taxa de amostragem conhecida tipifica o período de média e seleciona quais flutuações de alta freqüência serão ignoradas. Ao olhar para a expansão do algoritmo, podemos ver que ele favorece os valores mais recentes, e também porque é referido como ponderação exponencial. Nós substituímos por y k-1 dá Repita este processo várias vezes leva a Porque está no intervalo então claramente os termos à direita tornam-se menores e se comportam como uma exponencial em decomposição. Essa é a saída atual é tendenciosa em relação aos eventos mais recentes, mas quanto maior, nós escolhemos T, então, o menor preconceito. Em resumo, vemos que a fórmula simples enfatiza eventos recentes suaviza eventos de alta freqüência (período curto) revela tendências de longo prazo Apêndice 1 8211 Formas alternativas da equação Cuidado Há duas formas da equação de média exponencial que aparecem na literatura. Ambos são corretos e equivalentes. A primeira forma, como mostrado acima, é (A1) O formulário alternativo é 8230 (A2) Observe o uso na primeira equação e na segunda equação. Em ambas as equações e são valores entre zero e unidade. Anteriormente, foi definido como Agora escolhendo para definir. Portanto, a forma alternativa da equação de média exponencial é, em termos físicos, significa que a escolha da forma uma usa depende de como alguém quer pensar em tomar como a equação da fração retroativa (A1) ou Como a fração da equação de entrada (A2). A primeira forma é um pouco menos pesada ao mostrar a relação de filtro RC e leva a uma compreensão mais simples em termos de filtro. Analista principal de processamento de sinal da Prosig. Dr. Colin Mercer anteriormente era o Institute of Sound and Vibration Research (ISVR), da Universidade de Southampton, onde fundou o Data Analysis Center. Ele então passou a encontrar a Prosig em 1977. Colin se aposentou como Analista Principal de Processamento de Sinais em Prosig em dezembro de 2017. Ele é um engenheiro fretado e um membro da British Computer Society. Eu acho que você deseja mudar o 8216p8217 para o símbolo para pi. Marco, obrigado por apontar isso. Eu acho que este é um dos nossos artigos mais antigos que foi transferido de um documento antigo de processamento de texto. Obviamente, o editor (eu) não conseguiu detectar que o pi não havia sido transcritos corretamente. Isso será corrigido em breve. É uma boa explicação do artigo sobre a média exponencial. Creio que há um erro na fórmula para T. Ele deve ser T h (N-1), não T (N-1) h. Mike, obrigado por detectar isso. Acabei de verificar a nota técnica original do Dr. Mercer8217 em nosso arquivo e parece que houve erro ao transferir as equações para o blog. Vamos corrigir a publicação. Obrigado por nos informar. Obrigado, obrigado, obrigado. Você pode ler 100 textos DSP sem encontrar nada dizendo que um filtro de média exponencial é o equivalente a um filtro R-C. Hmm, você tem a equação para um filtro EMA correto, não é Yk aXk (1-a) Yk-1 em vez de Yk aYk-1 (1-a) Xk Alan, ambas as formas da equação aparecem na literatura, e Ambos os formulários estão corretos, como vou mostrar abaixo. O ponto que você faz é importante porque usar a forma alternativa significa que a relação física com um filtro RC é menos aparente, além disso, a interpretação do significado de um mostrado no artigo não é apropriada para o formulário alternativo. Primeiro, mostre que ambos os formulários estão corretos. A forma da equação que eu usei é e a forma alternativa que aparece em muitos textos é Nota no acima, usei latex 1latex na primeira equação e latex 2latex na segunda equação. A igualdade de ambas as formas da equação é mostrada matematicamente abaixo, tomando passos simples de cada vez. O que não é o mesmo é o valor usado para látex latex em cada equação. Em ambas as formas latex latex é um valor entre zero e unidade. Primeira equação de reescrita (1) substituindo latex 1latex por latex latex. Isso dá latexyk y (1 - beta) xklatex 8230 (1A) Agora defina latexbeta (1 - 2) látex e também temos latex 2 (1 - beta) látex. Substituindo estes na equação (1A) dá latexyk (1 - 2) y 2xklatex 8230 (1B) E, finalmente, reorganizar dá Esta equação é idêntica à forma alternativa dada na equação (2). Coloque mais látex de latex 2 (1 - 1). Em termos físicos, significa que a escolha da forma uma usa depende de como se quer pensar em tomar latexalphalatex como a equação da fração retrocessora (1) ou como a fração da equação de entrada (2). Como mencionado acima, usei o primeiro formulário, uma vez que é um pouco menos pesado ao mostrar a relação de filtro RC e leva a uma compreensão mais simples em termos de filtro. No entanto, omitir o acima é, na minha opinião, uma deficiência no artigo, já que outras pessoas podem fazer uma inferência incorreta, então uma versão revisada aparecerá em breve. Sempre me perguntei sobre isso, obrigado por descrevê-lo tão claramente. Eu acho que outro motivo para a primeira formulação é agradável é o mapa alfa para 8216smoothness8217: uma escolha maior de alfa significa uma saída 8216 mais suave8217. Michael Obrigado pela observação 8211 Eu adicionarei ao artigo algo nessas linhas, pois sempre me parece melhor relacionar-me com os aspectos físicos. Dr. Mercer, excelente artigo, obrigado. Eu tenho uma pergunta sobre a constante de tempo quando usado com um detector rms como em um medidor de nível de som que você se refere no artigo. Se eu usar suas equações para modelar um filtro exponencial com Constante de Tempo 125ms e usar um sinal de passo de entrada, eu realmente recebo uma saída que, após 125ms, é 63.2 do valor final. No entanto, se eu quadrado o sinal de entrada e coloque isso através do filtro, vejo que preciso dobrar a constante de tempo para que o sinal atinja 63,2 de seu valor final em 125ms. Você pode me informar se isso é esperado? Muito Obrigado. Ian Ian, se você marcar um sinal como uma onda senoidal, basicamente, você está dobrando a freqüência de sua fundamental, além de apresentar muitas outras freqüências. Como a freqüência foi efetivamente dobrada, está sendo 8216 reduzida8217 por uma quantidade maior pelo filtro passa-baixa. Em conseqüência, leva mais tempo para atingir a mesma amplitude. A operação de quadratura é uma operação não linear, então eu não acho que sempre dobrará precisamente em todos os casos, mas tenderá a dobrar se tivermos uma baixa freqüência dominante. Observe também que o diferencial de um sinal quadrado é o dobro do diferencial do sinal 8220un-squared8221. Eu suspeito que você esteja tentando obter uma forma de alisamento quadrático médio, que é perfeitamente bom e válido. Pode ser melhor aplicar o filtro e depois quadrado, como você conhece o ponto de corte efetivo. Mas se tudo o que você tiver é o sinal ao quadrado, então, usando um fator de 2 para modificar seu valor alfa do filtro, você irá retornar à freqüência de corte original, ou colocando um pouco mais simples, defina sua freqüência de corte duas vezes o original. Obrigado pela sua resposta, Dr. Mercer. Minha pergunta estava realmente tentando entender o que realmente é feito em um detector de rms de um medidor de nível sonoro. Se a constante de tempo estiver definida para 8216fast8217 (125ms), teria pensado que, intuitivamente, você esperaria um sinal de entrada sinusoide para produzir uma saída de 63,2 de seu valor final após 125ms, mas como o sinal está sendo quadrado antes de chegar ao 8216mean8217 Detecção, na verdade, levará duas vezes o tempo que você explicou. O objetivo principal do artigo é mostrar a equivalência da filtragem RC e da média exponencial. Se estamos discutindo o tempo de integração equivalente a um verdadeiro integrador retangular, você está correto que há um fator de dois envolvidos. Basicamente, se possuímos um verdadeiro integrador retangular que se integra aos segundos de Ti, o tempo equivalente do integer RC para alcançar o mesmo resultado é 2RC segundos. Ti é diferente do RC 8216time constant8217 T que é RC. Assim, se tivermos uma constante de tempo 8216Fast8217 de 125 ms, isso é RC 125 ms, então isso é equivalente a um verdadeiro tempo de integração de 250 ms. Obrigado pelo artigo, foi muito útil. Existem alguns trabalhos recentes em neurociência que usam uma combinação de filtros EMA (EMA de janela curta com espaço largo EMA 8211) como um filtro passa-banda para análise de sinal em tempo real. Eu gostaria de aplicá-los, mas estou lutando com os tamanhos de janela que diferentes grupos de pesquisa usaram e sua correspondência com a freqüência de corte. Let8217s dizem que eu quero manter todas as freqüências abaixo de 0.5Hz (aprox) e que adquiro 10 amostras em segundo lugar. Isso significa que fp 0.5Hz P 2s T P100.2 h 1fs0.1 O anterior, o tamanho da janela que eu deveria usar deveria ser N3. Este raciocínio correto Antes de responder a sua pergunta, devo comentar sobre o uso de dois filtros de passagem alta para formar um filtro de passagem de banda. Presumivelmente, eles funcionam como dois fluxos separados, então um resultado é o conteúdo de látex latexf para metade da taxa de amostragem e o outro é o conteúdo do latex latexf para metade da taxa de amostragem. Se tudo o que está sendo feito é a diferença nos níveis quadrados médios como indicar o poder na banda do latex latexf para latexf latex, então pode ser razoável se as duas freqüências de corte estiverem suficientemente distantes, mas espero que as pessoas que usam essa técnica Estão tentando simular um filtro de banda mais estreito. Na minha opinião, isso não seria confiável para um trabalho sério e seria motivo de preocupação. Apenas para referência, um filtro de passagem de banda é uma combinação de um filtro de passagem alta de baixa freqüência para remover as baixas freqüências e um filtro passa-baixa de alta freqüência para remover as altas freqüências. Há, naturalmente, uma forma de passagem baixa de um filtro RC e, portanto, um EMA correspondente. Talvez, embora o meu julgamento seja excessivo, sem saber todos os fatos. Então, você poderia me enviar algumas referências aos estudos que você mencionou, para que eu possa criticar conforme apropriado. Talvez estejam usando um passe baixo, bem como um filtro passa-alto. Agora, voltando-se para a sua pergunta real sobre como determinar N para uma determinada freqüência de corte do alvo, acho melhor usar a equação básica T (N-1) h. A discussão sobre os períodos teve como objetivo dar às pessoas a sensação do que estava acontecendo. Então, veja a derivação abaixo. Nós temos o latexT latexT (N-1) hlatex e látex latexT12 onde latexfclatex é a freqüência de corte nocional e h é o tempo entre as amostras, Claramente latexh 1 latex, onde latexfslatex é a taxa de amostragem em samplessec. A reorganização de T (N-1) h em uma forma adequada para incluir a freqüência de corte, latexfclatex e a taxa de amostragem, latexfslatex, é mostrada abaixo. Então, use latexfc 0.5Hzlatex e latexfs 10latex samplessec para que latex (fcfs) 0.05latex Dê Assim, o valor inteiro mais próximo é 4. Reorganizando o acima, temos Assim com N4 temos latexfc 0.5307 Hzlatex. O uso de N3 dá um latexfclatex de 0,318 Hz. Note com N1 que temos uma cópia completa sem filtragem.

No comments:

Post a Comment